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Abstract. Electromagnetic splittings for hadrons are calculated in a formalism where the constituent
quarks are considered as dressed quasiparticles. The electromagnetic interaction, which contains coulomb,
contact and hyperfine terms, is folded with the quark electrical density. The strong potential is a modifi-
cation of the well known funnel potential. Our model contains only one free parameter and the agreement
with experimental data is reasonable although it seems very difficult to obtain a perfect description in any
case.

PACS. 12.39Pn Potential models – 13.40Dk Electromagnetic process and properties

1 Introduction

Quantum Chromodynamics (QCD) is believed to be the
good theory of strong interaction, but mesons and baryons
belong to the non perturbative regime, and, in this case,
the theory is very complicated. This explains why a num-
ber of alternative simpler models were invented.

Among them, the non relativistic quark model
(NRQM) is very appealing: it is simple concerning both
the formulation and the numerical calculation, it allows a
good treatment of the center of mass motion and it has
met with a lot of successes in many domains (see [1]).

In those models, the degrees of freedom are called con-
stituent quarks; they are complicated objects and they
must be considered as quasi-particles with some spatial ex-
tension.In this picture, the constituent quarks must have
some spatial density and the strong interaction should
be folded with some gluonic density and the electromag-
netic potential with some electromagnetic quark density
([2],[3],[6],[7]). There is no reason that the strong density
and the electromagnetic density should be the same.

One knows that it is very difficult to obtain a good
description for the spectra of mesons and baryons in a
unified treatment([8], [9]). In general, a model good for
mesons fails for the description of baryons and the other
way round. Here we need to have a correct description of
both and we use a strong potential that is a good com-
promise for that.

But spectra are not enough to test completely a model,
and one must rely on more sensitive observables ([10]).
The electromagnetic splittings of isospin multiplets are
very well suited to make such a study. The origin of the
splitting is a mass difference between the up and down

quark (probably already present in the original QCD la-
grangian) and also an electromagnetic potential contain-
ing a coulomb term and relativistic corrections to it.

In this paper, we want to deal with all the known split-
tings both in mesons and in baryons in a consistent ap-
proach and to push the NRQM study further in several
domains. First we want to perform a precise and complete
treatment, avoiding perturbative expressions. Second we
introduce the contact term, that is usually neglected, in
the electromagnetic potential. Lastly, our most important
improvement is the use of a dressed electromagnetic inter-
action among the quarks.

The first section is devoted to the description of strong
and electromagnetic potentials that will be employed. The
second section presents the results for the splittings of
mesons and baryons and the last section deals with con-
clusions.

2 Strong and electromagnetic potentials

2.1 AL1 potential

Since we are interested by meson and baryon splittings,
we have the necessity to use a strong potential that allows
a good description of spectra for both types of hadrons.
The AL1 potential ([11],[12]) is a slight modification of
the well known funnel potential. It looks like :

Vij(r) = − 3
16

λi · λj

[
V

(ij)
C (r) + V

(ij)
H (r)

]
. (1)

Basically it contains two terms with the same colour de-
pendence, that comes in fact from one gluon exchange.
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The central part

V
(ij)
C (r) = −κ

r
+ ar + C. (2)

is coulomb+linear and it has also a constant contribution,
necessary to reproduce the absolute masses. There is no
reason, except simplicity, that the colour dependence is
kept unchanged for the confining and constant parts.

The hyperfine term

V
(ij)
H (r) =

8π

3mimj
κ′ exp(−r2/σ2

ij)
π3/2 σ3

ij

si · sj . (3)

is flavour dependent through the interacting masses; be-
side the usual 1/mimj factor, the range σij is also mass
dependent: σij does depend on the flavor

σij = A

(
2mimj

mi + mj

)−B

. (4)

The parameters are completely phenomenological and
have been determined essentially on meson spectra. In this
sense, they already contain the dressing by the gluonic
density. This is manifest from the expression of the hy-
perfine term, in which the usual δ(r) term is regularized
by a gaussian function.

This potential, used in a Schroedinger equation, gives
an overall good description of hadronic spectra, both in
the mesonic and baryonic sectors.

There exist many algorithms to compute radial wave
functions. Due to the extreme sensitivity of the splitting
on the numerical treatment, it is very important to adopt a
method which is very precise (and if possible a fast one). In
the mesonic sector, we used a method based on Lagrange
mesh, which is very simple, very precise and very fast.
Technical details of this method can be found in [4]. The
number of significant digits is around 10. In the baryonic
sector, we used a variational method based on harmonic
oscillator basis with different sizes for the various Jacobi
coordinates. This method was described in [5] and was
proved to be competitive with the stochastic method, if
pushed to a number of quanta in the basis equal to 20.
The number of significant digits is estimated to 5.

2.2 Electromagnetic quark density

In NRQM, the constituent quarks are extended objects.
This means that for a quark at an average position r,
there exists a certain probability to be at position r′: this
probability is more or less a density ρ(r−r′, γ), where the
parameter γ represents the size of the object. This density
must be a peaked function reducing to a delta function at
the limit of a vanishing size. Another natural property is
that the density is isotropic. Lastly, we also require that its
integral over the whole space is unity. The most popular
densities are of lorentzian, gaussian or Yukawa type. Here
we adopt a Yukawa form. There is a precise reason for
that: the density is the leading ingredient of the meson

charge form factor. It is an experimental fact that the
data accomodate rather nicely a Yukawa density, which
has the good asymptotic behaviour. The chosen form is
such as :

ρi(u) =
1

4πγ2
i

e−u/γi

u
, (5)

Within this framework, the two body potentials are
obtained from the bare ones with help of a double convo-
lution, one convolution for each of the interacting particle.
In fact, just by a simple change of variables, such a double
convolution can be reduced to a single convolution:

Uij(r) =
∫

dr′ U
(b)
ij (r′) ρij(r − r′), (6)

In the pecular case of our Yukawa density, the expression
for the interacting density is :

ρij(u) =
1

4π(γ2
i − γ2

j )

(
e−u/γi

u
− e−u/γj

u

)
(7)

This expression is valid for interacting particles with
different sizes. For particles with identical sizes, the true
expression is just the limit of the previous one for γj → γi.

2.3 Bare potential

To describe the splittings, one needs first a weak SU(2)
breaking allowing a different mass for the u and d quark,
but also the presence of the electromagnetic potential. Its
traditionnal form originates from relativistic corrections
to the Coulomb potential.

U
(b)
ij (r) = (Ucoul)

(b)
ij (r) + (Ucont)

(b)
ij (r) + (Uhyp)(b)ij (r), (8)

The important terms are the Coulomb, hyperfine and con-
tact terms whose expressions are :

(Ucoul)
(b)
ij (r) = QiQj

α

r
, (9)

(Ucont)
(b)
ij (r) = −π

2
QiQj

(
1

m2
i

+
1

m2
j

)
α δ(r), (10)

(Uhyp)(b)ij (r) = −8πQiQj

3mimj
α δ(r)si · sj , (11)

where α is the fine structure constant.
In principle it contains also Darwin, spin-orbit and ten-

sor contributions, but their effects are presumably weak
and they are neglected in the following. Usually people
also neglect the contact term, keeping only the Coulomb
and dipole-dipole interactions. Here we include the effect
of the contact term in order to grasp quantitatively its
effect and to justify a posteriori the validity (or not) of
neglecting it.
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2.4 Dressed potential

From the bare potential of the previous section 8, and
the interacting density 7, the convolution 6 gives the ex-
pression of the dressed electromagnetic potential. For each
contribution, the various terms look like this :

(Ucoul)ij(r) =

αQiQj

(
1
r

− γ2
i

γ2
i − γ2

j

e−r/γi

r
+

γ2
j

γ2
i − γ2

j

e−r/γj

r

)
, (12)

(Ucont)ij(r) =

− αQiQj

8(γ2
i − γ2

j )

(
1

m2
i

+
1

m2
j

)
e−r/γi − e−r/γj

r
, (13)

(Uhyp)ij(r) =

− 2αQiQj

3mimj(γ2
i − γ2

j )
e−r/γi − e−r/γj

r
si · sj . (14)

and the corresponding limits in the case of particles with
identical sizes.

Very often such a potential is treated perturbatively.
Here we have the ability to perform an exact treatment.
A comparison with a perturbative calculation is very in-
structive.

3 Results

3.1 Determination of the parameters

The first thing to do is to determine the parameters. We
do not want to introduce a lot of new parameters; here we
restrict the number of free parameters to the minimum
unavoidable. In particular, the parameters of the strong
potential are maintained without modification. The first
parameters to be introduced are the electromagnetic sizes
of the quarks γi. Indeed the meson form form factors, or
alternatively the charge mean square radii, are very de-
pendent from those parameters. The dressed radii are just
the sum of the bare radii plus a contribution entirely due
to the dressing, which can be expressed, with the Yukawa
density, as:

〈
r2〉 =

〈
r2〉(b) + 6

2∑
i=1

eiγ
2
i . (15)

Thus the pion radius is well suited to get the size for the
u and d quarks; I suppose that these two sizes are iden-
tical. The kaon radius depends both on the size of the
ordinary quark and the size of the strange quark. Since
the size of the ordinary quark is already known from the
pion radius, the kaon radius provides us with the size of
the strange quark. Typically we have γu = 1.225GeV −1

and γs = 0.200GeV −1. We don’t have any experimental
data concerning charmed and bottom quarks; we choose
values that are smoothly drecreasing with size, namely
γc = 0.04GeV −1 and γb = 0.013GeV −1.

Concerning the parameters appearing in the strong
potential, we decided to let them unchanged, except the
masses of the u and d quarks that are now split. In order
to minimize the number of free parameters, we also main-
tain their average value; thus we have at our disposal only
one free parameter, the mass difference ∆ = md − mu,
to try to explain the totality of all known splittings. This
parameter is determined on a precise and sensitive value,
namely the mass difference for the sigma multiplet.

3.2 Experimental sample

For experimental sample, we consider 10 splittings in the
mesonic sector, and 16 splittings in the baryonic sector.
They belong to the light and heavy quark sectors. They
are typically of order of few MeV. The hierarchy of most
of the multiplets can be explained naively just by sup-
posing md > mu. Nevertheless, it remains some puzzling
questions that cannot be interpreted in this naive scheme.
I list some of them here.

– n − p is a positive value (this is normal), but π+ − π0

is a larger quantity while naively it should be smaller;
– π+ − π0 is positive, while ρ+ − ρ0 is negative;
– One multiplet in the D sector, namely the D2, is much

smaller than all others in the same sector;
– Σ++

c is experimentally the highest member of the mul-
tiplet while a naive argument would have expected it
the smallest one;

– in the Ξc sector, there is a multiplet which does not
fit with the pattern of the others.

Indeed, the electromagnetic splitting is a small quan-
tity (around 1 MeV or less) that is obtained by a differ-
ence of large quantities of order 1 GeV . This means that
it is a very sensitive quantity which represents a subbtle
balance between various ingredients.

In particular, it is of first importance to perform a very
precise numerical treatment both in the mesonic and the
baryonic sector. An error of 10−3 GeV on the absolute
masses, which can be considered as good for such an ob-
servable, would lead to very incorrect values concerning
the splittings. We feel that an accuracy of order 10−5 on
the absolute masses should be reached in order to insure
reliable conclusions. This is why we take a special care in
our numerical treatment.

It is also important to take care of all the terms of the
electromagnetic potential, because all of them are equally
important. In the same spirit, it is crucial to have a good
wave function. Changing the strong potential may affect
seriously the wave function, without spoiling too much the
spectra, and this may have a dramatic repercussion on the
theoretical splittings.

3.3 Some approximations

Usually the dressing of the electromagnetic potential is
not considered, or only partly, and often the bare one
is taken into account in a perturbative way. Of course,
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Table 1. Electromagnetic splittings (in MeV) for mesons ob-
tained with an exact treatment based on wave functions re-
sulting from AL1 potential. The total electromagnetic hamil-
tonian is considered. For information, the experimental data,
extracted from [13], are given in column “Exp”

Splitting Exp Theo

π+ − π0 4.594 ± 0.001 1.69
ρ+ − ρ0 −0.5 ± 0.7 0.71
K0 − K+ 3.995 ± 0.034 8.11
K0∗ − K+∗ 6.7 ± 1.2 1.44
K0

2 − K+
2 6.8 ± 2.8 −0.76

D+ − D0 4.78 ± 0.1 2.31
D+∗ − D0∗ 2.6 ± 1.8 1.04
D+

1 − D0
1 6.8 ± 5 −2.16

D+
2 − D0

2 0.1 ± 4 −2.23
B0 − B+ 0.33 ± 0.28 −1.71

changing the free parameters can give correct results, but
we think that using a dressed expression is more satis-
factory. It allows to have a complete consistency between
the treatments for spectra, for charge radii, and for the
electromagnetic splittings.

The use of the dressed potential, instead of the bare
one is crucial. Indeed, the bare interaction cannot be used
in an exact calculation, because it leads to a collapse, due
to the presence of the Dirac term. But even in a pertur-
bative treatment, we checked that the differences between
bare and dressed potentials can raise 50 MeV, a very im-
portant value. We also think that, since the strong poten-
tial is already dressed with a gluonic density, it is much
more consistent and satisfactory to dress also the electro-
magnetic potential.

Using a perturbative procedure can give catastrophic
results for certain states. In fact the fault is not due to
the electromagnetic potential, but mainly to the strong
hyperfine term that depends strongly on the mass differ-
ence ∆.

Also, all terms of the electromagnetic potential are im-
portant, including the contact term that is usually ne-
glected, but it is impossible to say which term is the lead-
ing one. Nevertheless, we have remarked that the contact
term has a tendancy to spoil the result. We have no ex-
planation for this bad feature.

All these remarks are the consequence that the split-
tings are a small quantity obtained from large contribu-
tions.

3.4 Meson splittings

The results for the splittings in the meson sector are pre-
sented in Table 1.

All the terms of the electromagnetic potential are
taken into account and an exact numerical treatment is
performed. The results are not very good. This is in part
due to the fact that the only free parameter has been fitted

Table 2. Same as Table 1 for baryons. The theoretical uncer-
tainty may affect only the last digit

Splitting Exp Theo

n − p 1.293 1.15
∆0 − ∆++ 2.25 ± 0.68 3.72
∆+ − ∆++ 1.2 ± 0.6 1.35
Σ− − Σ0 4.81 ± 0.04 4.76
Σ− − Σ+ 8.08 ± 0.08 8.55
Σ−∗ − Σ0∗ 2.0 ± 2.4 2.94
Σ−∗ − Σ+∗ 0 ± 4 1.96
Ξ− − Ξ0 6.48 ± 0.24 7.38
Ξ−∗ − Ξ0∗ 3.2 ± 0.6 2.66
Σ++

c − Σ0
c 0.35 ± 0.18 0.37

Σ0
c − Σ+

c 0.9 ± 0.4 0.33
Σ++∗

c − Σ0∗
c 1.9 ± 1.7 0.19

Ξ0
c − Ξ+

c 5.5 ± 1.8 3.42
Ξ0′

c − Ξ+′
c � 4.2 ± 3.5 0.20

Ξ+∗
c − Ξ0∗

c � 2.9 ± 2.0 −0.25
Ξ0∗∗

c − Ξ+∗∗
c � 4.1 ± 2.5 3.51

in the baryonic sector (on the sigma multiplet). We could
have obtained much better results, by fitting for example
the pion multiplet, but in that case the baryonic sector
would have been spoilt a lot. Let us also stress that the
results very much depend on the strong potential. Using
a different potential gives results appreciably different. In
this case, none of the mentioned puzzles can find a solu-
tion, except may be the charmed resonances. Once again,
we are faced to the problem of having a consistent descrip-
tion of mesons and baryons.

3.5 Baryon splittings

The results for the splittings in the baryonic sector are
presented in Table 2, with the same conventions. The re-
sults look much more in agreement with data. The order
of magnitude is the correct one, and when differences are
significant, this always correspond to experimental values
affected of a large uncertainty. The order in the multiplet
is practically always respected, in particular for the Σc

multiplet, solving thus one puzzle. Owing to the fact that
we have only one free parameter at our disposal, these
results can be considered as very encouraging.

Let us mention that the absolute masses of the baryons
are also in nice agreement with the data. A small discrep-
ancy is seen for light baryons, but it can be attributed to
three-body forces that are not considered here.

4 Conclusions

The electromagnetic splittings are very sensitive observ-
ables depending upon a lot of ingredients. In consequence,
it is of first importance
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– to dress the potentials
– to take into account all influent terms in the potentials
– to perform an exact treatment and not only a pertur-

bative one
– to use numerical algorithm that allow precise calcula-

tions for both the two-body and the three-body case

The results also depend significantly on the wave function,
and it is important to employ a strong potential that gives
a good description of both mesaon and baryon sectors.

We were very cautious in all these respects, and are
very confident in our conclusions.

Some puzzles have found a solution, but others are still
opened questions, and this means that this subject merits
further investigations.
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